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Mode-Matching Analysis of the Step
Discontinuity in Elliptical Waveguides

Pawel Matras, Rainer Bunger, and Fritz Arndt, Fellow, IEEE

Abstract— The modal scattering matrix of the step discon-
tinuity of two elliptical waveguides of different cross sections
is calculated rigorously by the direct mode-matching method
using the Mathieu equation. For the convenient treatment of the
Mathieu functions, an efficient trigonometric series expansion
technique is used. As examples, the input reflection coefficients
are calculatec of two step discontinuities, a nearly circular-to-
circular waveguide transition and a transition from larger to
smaller confocal elliptical waveguide. Excellent agreement with
reference results verifies the accuracy of the presented method.

1. INTRODUCTION

LLIPTICAL waveguides [1]-[7] have found increasing

application in the design of many microwave structures
with specific characteristics, such as radiators [5], corrugated
horns [4], and resonators [7]. Although the cross-section
eigenvalue problem has already been solved by many authors
for a rather long time [1]-{3] and has attracted recent interest
[6]-[8], the three-dimensional (3-D) scattering problem of re-
lated structures has not yet been treated by the mode-matching
method so far. The availability of fast and efficient methods
for deriving the modal scattering parameters, however, is
important for the reliable design and optimization of elliptical
waveguide structures with improved performance.

This letter describes the rigorous direct mode-matching
analysis of the scattering problem at the discontinuity of
two elliptical waveguides of different cross section (Fig. 1).
The solution of the related eigenvalue (Mathieu) equation is
advantageously based on an efficient trigonometric expansion
technique.

II. THEORY

For a waveguide of elliptical cross section (see Fig. 1) with
the focal distance 2h, the wave equation for the corresponding
transversal eigenfunctions T'(¢, n) = U(€)V(n) is given in
elliptic coordinates &, 1, z by [6]

2
?37‘2/ + (@ — 2gcos2n)V =0
2 ¥
%TIZJ —(a—2qcosh26)U =0 (1)
with the abbreviation
k2
q = Zc h? 2)
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Fig. 1. Transition larger to smaller elliptical waveguide: (a) step discontinu-
ity and (b) elliptical coordinate system.

where k. is the cut-off wavenumber and ¢ is a constant,
denoted as the “separation constant” [6]. The second equation
of (1), the modified Mathieu equation, is related to the first
equation—the Mathieu equation—via the transformation £ =
jn, where § = /—1.

The formal solution of the eigenvalue problem, (1), leads

to [6]
76 = { 5u) il @

where ce, se, and Ce, Se denote the even and odd Mathieu

and modified even and odd Mathieu functions, respectively.
Equation (1) is solved numerically very efficiently by the

trigonometric serics expansion of [9] and [10]1

cean(n) = Z: Ay, cos(2rn)

r=0

I Here, the standard notation of [10} is used. The indexes n represent the
dependency of the coefficients A and B on n.
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ceznt1(n) = Y Asricos|(2r + 1)1

€y
=0
seont1(n) = Y Bap1sin[(2r + 1)7]
r=0
seon2(n) = Y, Bapyasin[(2r +2)7]. (5)

r=0

With (1)—~(5), first the separation constant ¢ in (1), and then
the coefficients in (4) and (5) are determined numerically. For
a, the following equation is obtained

a=m2—Up —Vm=0 m>0 6)
with the abbreviations?
2n, for ceq,,
m = { 2n+1, for ceany1 and seapnt1
2n +2, for sepnqo
2
VU = tvq y n Z O
a—{(m+2)2 = vy
U 9 n =
U = { tug " ™)
a—(m—2)2 -y o’ =
where
b 2, for ce and vy
YTl 1, else
|2, forceand uo
b = { 1, else ®
and
0, for even m
Uy = { q, for odd m and ce
--q, for odd m and se.

v and u are supplementary variables [10] formulated by the
ratio of the corresponding coefficients in (4) and (5), e.g., for
the first equation in (4)

_ Az+2
v; = A
Ao
=y ()]

The consideration of the normalization conditions [10], e.g.,
for cean(n)

27 O 2
/ Z Agpcos(2rz)| dz =« (10)
0 r=0
leads to expressions of the form
2+ + (v0v2)® + (vovzva)® + - = 2. (1)
0

2This notation, different from that in [10], is common for all modes. This
leads merely to one equation (instead of four); the parameters need to be
initialized only when the mode changes (¢., t,) or at the beginning of the
calculation of the value of the functions (v, wm).
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From (11) Ay can be determined. Generally, the first coeffi-
cient can be calculated by

1

o) =1 2
to+ Z (H ’Um)
=1 n=0

C= (12)

where

2, for ceqp

tc =
1, else
Ag, for ceqp

C = Al, for CCan41
B,, for seano
Bl, for S€on+1-

The other coefficients A or B are then calculated by (7) and
(9). (For the calculation of B, in (9) A should be replaced
by B.)

The cut-off frequencies of typical elliptical waveguide cross
sections have been calculated up to 300 higher-order modes
and have been compared with own FEM calculations and
values reported in [8]. Excellent accuracy (up to eight digits)
has been obtained.

The modal scattering matrix of the discontinuity (Fig. 1) is
obtained in the usual form [11] by matching of the tangential
field components. Application of the orthogonality of the
eigenfunctions and rearranging the equations yields the modal
scattering matrix of the discontinuity directly

a;+by = [M](a2 -+ bz), as — by = [M]T(a1 - bl) (13)
where®

M =6Ké; (14)

with the diagonal matrices § containing the normalization
expressions N and the frequency-dependent wave impedances
and admittances of the adjacent waveguides, respectively.
These results are valid for the confocal and nonconfocal case.
Since the explicit presentation of the coupling integrals for the
general case would be beyond the scope of this letter, only the
frequency-independent coupling integrals of a discontinuity of
confocal elliptic waveguides are given.

1) For the TE-TE coupling of the waves TEc., . and
AchApcl

TE¢y, ;. or TEg,, , and TEg, ,
Cez(fo)celz(fo)} S { }
{ 7;0 Ap52Ap.51 ’
(15)

Sez(éo) Set (&o)
2) For the TM-TM coupling of the waves TMc¢y,,; and
TMCn,j, or TMSm,i and TMan
{Cel(§0) Cey(éo) } {ApczApc1
ApsZApsl '
(16)

/
Se1(&o)Sey(éo)
3The index “1” denotes the larger waveguide, and the index “2” denotes
the smaller one.

2
o
Ki,i1= — - 2
2 —4c1

oo

D

r=0
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. Td4c1

Ky ="+
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Fig. 2. Input reflection coefficient as a function of frequency for a disconti-

nuity of elliptical waveguides with nearly circular geometry. (Reference results
are for exactly circular waveguides.)
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Fig. 3. Input reflection coefficient as a function of frequency for the discon-

tinuity of two confocal elliptic waveguides.

3) For the TM-TE coupling of the waves TMc,, ; and

TES'n,]
Ky, = mCes (&) Sea(€0) > PAper Apsa- a7
r=0
4) For the TM-TE coupling of the waves TMg,, ; and
TEcy, ;
o
Ky, 1 = —7 Se1(&o) Cea(&o) Z PApcaApsi. (18)

r=0

q is related to the cut-off wavenumber by (2), the dash
denotes the corresponding derivative, and p is the abbreviation

-

2r
2r+1

r=1,2, 3, .- for both even modes
r=20,1, 2, .- for both odd modes.
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For all other couplings, the coupling integrals are zero,
particularly those between odd and even wave modes.

ITT. RESULTS

Fig. 2 shows the input reflection coefficient as a function
of frequency for a discontinuity of elliptical waveguides with
nearly circular geometry. Excellent agreement with reference
values obtained by the mode-matching method for circular
waveguides is obtained. In Fig. 3, the input reflection coeffi-
cient for the discontinuity of two confocal elliptic waveguides
is calculated and verified with values obtained by the FE/MM
method [11]. For the calculations, all higher-order modes in
the order of increasing cut-off are considered up to the cut-
off frequency of 100 GHz. The efficiency of the presented
method is demonstrated by the fact that the above direct mode-
matching results are calculated by using a simple 486-level PC,
where the cpu time for a typical frequency response was less
than 20 min.

IV. CONCLUSION

A direct mode-matching technique is proposed for the
calculation of the modal scattering matrix of the confocal
step discontinuity of elliptical waveguides. Because of the
high numerical efficiency of the method, only a standard
PC is required for the rigorous analysis of the investigated
discontinuities.
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